
Introduction

Creating PDF reports using Python and ReportLab

I'll be covering the use of Python and the ReportLab library to create
quality PDF documents such as database reports. I'll show you how to
send these directly to a web client using CGI, and how to pull the data
you need out of a PostgreSQL database.

What is Python?

Python is an interpreted, object oriented language that's useful for
beginner and advanced users.

• Useful built-in library

• High level data structures

• Clean syntax

• Very flexible

• Serious language. Metaclasses, multiple inheritance, etc.

What is ReportLab

ReportLab is an open source PDF creation library for Python.

Powerful yet simple to use
• Exposes the low-level PDF "canvas"

• Provides high level document formatting and layout

• Includes support for tables, graphs, etc

• Supports the creation of vector graphics

Portable
• Runs on Linux/BSD/UNIX, MacOS X, Windows

• Works under both cPython and Jython.

What is ReportLab Not?
• WYSWIG publishing like Quark, InDesign, or Scribus.

• A report building program like Crystal Reports

• A document formatting system like LaTeX (though you can use
it for that, too)

ReportLab Features

Efficient

PDF has a reputation for being bloated and inefficient. This is at only
partly justified.

• Most PDFs are created from output optimised for PostScript
printers.

• Lots of redudant or unused information

• Hard to identify and re-use repetitive content.

• PDF creation has a very different set of needs and priorities.

• Distillers have their work cut out for them just handling quirky
PostScript from apps.

ReportLab, on the other hand, generates small, efficient, and clean
PDFs.

• Outputs images and fonts once, then re-uses them throughout the
document.

• Supports PDF forms to allow the efficient re-use of repeated
content.

• Improved control lets programmers elimate redundant contents

• This PDF is little over 300kb including graphics.

Uses advanced PDF features

ReportLab lets you make use of some of the advanced features of the
PDF format that are hard or impossible to use with many other PDF
creators.

• Bookmarks and links

• Document Outlines

• Transitions

• PDF Forms

• Embedded fonts

Now that I've convinced you...

Hello World

No demo would be right without a simple Hello World style example. I
aim to please, so...

Please see the hello_world.py example.

Important: The examples referenced in this document are not good
Python code by any stretch of the imagination. They're kept very
simple to make what we're demonstrating stand out - at the cost of
error handling, good structure, and general quality.

Please don't take them as Python examples, just ReportLab examples.

The Canvas

ReportLab is based around the idea of a "Canvas", or drawing area.
Objects are drawn onto the canvas, either directly or using higher-level
drawing APIs.

The canvas follows a co-ordinate scheme more familar to
mathematicians than computer programmers.

• Programmers more familar with (0,0) as the top left.

• ReportLab uses the PostScript model more familiar to
mathematicians.

• Origin is at the bottom left of the page, with positive y moving
upwards.

• Objects and text are drawn from their bottom left, not top left.

ReportLab APIs
ReportLab has three major drawing APIs, each with a different purpose
and each useful for different things.

• Canvas

• Platypus

• Drawing

Canvas
• Lowest level API

• Close to the PDF drawing model

• Clumsy for anything complex

Drawing
• Used for constructing vector graphics

• Like Platypus, uses Canvas for drawing

• Supports non-PDF output formats, too

Platypus
• Provides a higher level API for document layout

• Includes typesetting features

• Separates formatting and content

• Has useful pre-defined support for tables and other structures

• Uses Canvas for drawing

A Platypus example

This is straight out of the documentation, and explained better there so
I won't cover it in detail.

It demonstrates the use of the automatic text flowing, plus the use of
the canvas to draw "extras" like headings and footers.

Please see the platypus_demo.py example.

Tables in Platypus

Platypus has very nice support for tables. This is of a great deal of
interest when reporting out of a database.

• Easy to construct

• Formatting separated from contents

• Great formatting system well suited to tabular data

• Uses in combination with databases obvious

Example use of a table

The following program shows how neatly separated formatting and
content really are, and how easy it is to build a table.

Please see the platypus_table.py example.

PostgreSQL and Python

Getting data out of the database

The Python DBI is nice to work with

• Simple

• Sensible - tends to do the right thing

• Efficient - lets you get on with programming without worrying
about optimisation

I won't go into much detail here, beyond quickly explaining how to get
data from the DB.

PyPgSQL example

As you can see, it's simple to get the data from the DB. The formatting,
however, leaves a lot to be desired.

Please see the simple_db_example.py example.

Putting ReportLab and the DBI to work
It should be obvious by now that the table formatting abilities of
ReportLab's Platypus are a good fit with database interfaces, such as
the one provided by PyPgSQL.

A simple example

The following example demonstrates the simple use of PyPgSQL with
Platypus tables. No formatting is attempted.

Please see the simple_db_table.py example.

Adding some formatting

It's fairly simple to add formatting to the table without changing the
way it's constructed at all.

• Formatting done by a series of rules

• Rules apply to a range of cells

• Later rules override eariler ones, permitting general then specific
formatting

• Can control font, type size, font and cell colours, draw lines, etc.
Please see the formatted_db_tables.py example.

A real-world example

customer_bookings_by_month.py is a real-world example from my
work at the POST newspapers. In addition to the table formatting,
several other improvements have been made.

• Page number, timestamp and short title in footer

• Uses forms for the static footer info

• Nicely formatted title

• Margins pushed out

• Note the use of the Canvas API for drawing the footer and title

• CGI support

CGI support
It's simple to create a report that can be used as a normal script or a
CGI application.

Adding CGI support

A few things are needed to make a ReportLab program work as a CGI
script.

• Handle getting parameters from a CGI form or command line
input

• Detect the CGI environment by looking for QUERY_STRING
in the environment.

If the CGI environment is found:
Import the cgi and cgitb modules

• print nothing to stdout

• Pass sys.stdout as the file argument to the canvas or document
constructor.

• Before calling canvas.save() or document.build(), send some
headers.

Example CGI code

Here are the crucial bits to get CGI support going. First, detect the CGI
environment, load CGI support, and create the form object used to read
CGI form attributes:

Detect the CGI environment and load CGI support
def cgiCheck():
 """Check to see if we're running as a CGI script by checking for the
 QUERY_STRING env var. If found, set ourselves up to run as a CGI program."""

 global form,iscgi

 if 'QUERY_STRING' in os.environ:
 iscgi = True
 # Yup, we're running as a CGI program. Load CGI support.
 import cgi
 import cgitb; cgitb.enable()
 form = cgi.FieldStorage()
 else:
 # Nope, looks like we're producing a PDF file instead.
 iscgi = False

... set the output file to stdout if we're running under CGI:
if iscgi:
 output_file = sys.stdout
else:
 output_file = sys.argv[1]

Note that we pass a file object, sys.stdout, in the CGI case, and a
raw filename otherwise. ReportLab is smart enough to tell the
difference and deal with it.

... and send some headers before generating the PDF:
Before sending your output, print some headers
if iscgi:
 print "Content-Type: application/pdf"
 print "Content-Disposition: attachment; filename=report.pdf"
 print
canvas.save()

Converting existing code

To see just how simple it can be to convert an existing app, have a look
at upgrade_odyssey_for_cgi.diff in the examples. It should apply
cleanly to the demos/odyssey/fodessey.py demo in ReportLab 1.11.

I'll leave adding support for getting arguments from an HTML form up
to the reader. To run it, you will need the 'odyssey.txt' and possibly full
odyssey text in the same directory as the script. Make sure to unzip the
full text with the -a argument to unzip!

Mostly done
That's the basics you need to know covered. A few other issues may be
of interest, though, so time permitting we'll get onto those.

Speed

ReportLab is written almost entirely in Python. As a result you can
easily browse over the code, and it's easy to adapt and work with.
Unfortunately, it does incur a speed penalty. Speed can be an issue for
web use.

rl_accel

A C "accelerator" module in included, but not built by default. Look in
lib/README.extensions for info about building it. It is used
automatically if found.

Psyco

There is also a general purpose JIT (Just In Time) compiler for Python,
called Psyco. It's trivial to support in most existing programs.

Adding Psyco support to an existing app

The follwing code, added after the main import block, will usually
result in a significant (often around 30%) speed improvement in
Python code.

Try to activate Psyco, failing silently and gracefully if we can't.
try:
 import psyco
 psyco.full()
except:
 pass

A few tips
• RTFM. It's an open source app with good documentation. Don't

waste it.

• Seriously. Read it cover to cover if you can, it'll save you a lot of
wasted time and effort.

Other uses
• Printing system for legacy apps and languages with limited

printing abilities

• Cross-platform printing system for any app - avoids the need to
impement a PostScript engine

• Content formatting system for embedding in an app

• Newspaper classifieds pagination. E-Mail me if you're interested
in this.

Extra goodies

PythonPoint

This presentation was written in PythonPoint, a formatting system that
converts an XML document to a nicely formatted PDF.

The formatting for this document was shamelessly ripped off from the
PythonPoint manual for time reasons. The PythonPoint manual does it
much better. Check it out.

Py2PDF

Py2PDF is a cool little app that converts Python source code into
syntax-highlighted, neat PDF documents.

Getting the software

Python

You'll want at least Python 2.2, with 2.3 recommended. You can get it
from http://www.python.org/

ReportLab

ReportLab is available from http://www.reportlab.org/

PyPgSQL

The home of PyPgSQL is http://pypgsql.sourceforge.net/

PIL, the Python Imaging Library

You'll want PIL for working with images in ReportLab. Get it from
http://www.pythonware.com/products/pil/ .

Psyco

Psyco is the Just in Time compiler I (didn't) demonstrate. Get it from
http://psyco.sourceforge.net/

References
• http://www.reportlab.org/os_documentation.html -- The

ReportLab docs

• http://www.python.org/peps/pep-0249.html -- The Python
DB-API

• The PythonPoint documentation, included in the ReportLab
distribution

• http://www.python.org/doc/2.3.3/ -- The excellent Python
documentation

About the Author
Craig Ringer works for the POST Newspapers as a sysadmin, network
admin and internal developer. There's a saying about the jack of all
trades that may apply to this situation.

He programs in Python by preference, having made a remarkable
recovery after learning to program in Perl and Pascal. Any suggestion
that Python is "just a scripting language" are best made at more than a
3 metre distance to avoid flying foam.

He can be reached at craig@postnewspapers.com.au, at least until his
employer realises he doesn't seem to do anything.

	Introduction
	What is Python?
	What is ReportLab?
	What it's not

	ReportLab Features
	Efficiency
	Advanced features

	Convinced?
	The canvas

	ReportLab APIs
	Canvas
	Drawing
	Platypus
	Platypus Example
	Platypus Tables

	Python DBI
	PyPgSQL example

	Putting them together
	Basic example
	Adding formatting
	A finished example

	CGI
	The basics
	Example CGI changes
	Converting existing code

	Mostly done
	Speed
	A few tips

	A few tips
	Extra goodies

	Getting the software
	References
	About the Author

